Ramsey properties of finite measure algebras and topological dynamics of the group of measure preserving automorphisms: some results and an open problem
نویسندگان
چکیده
We study in this paper ordered finite measure algebras from the point of view of Fräıssé and Ramsey theory. We also propose an open problem, which is a homogeneous version of the Dual Ramsey Theorem of GrahamRothschild, and derive consequences of a positive answer to the study of the topological dynamics of the automorphism group of a standard probability space and also the group of measure preserving homeomorphisms of the Cantor space.
منابع مشابه
Some Observations on Dirac Measure-Preserving Transformations and their Results
Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...
متن کاملNon-regularity of multiplications for general measure algebras
Let $fM(X)$ be the space of all finite regular Borel measures on $X$. A general measure algebra is a subspace of$fM(X)$,which is an $L$-space and has a multiplication preserving the probability measures. Let $cLsubseteqfM(X)$ be a general measure algebra on a locallycompact space $X$. In this paper, we investigate the relation between Arensregularity of $cL$ and the topology of $X$. We find...
متن کاملOn equality of absolute central and class preserving automorphisms of finite $p$-groups
Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^...
متن کاملVarious topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملRecent Developments in Finite Ramsey Theory: Foundational Aspects and Connections with Dynamics
We survey some recent results in Ramsey theory. We indicate their connections with topological dynamics. On the foundational side, we describe an abstract approach to finite Ramsey theory. We give one new application of the abstract approach through which we make a connection with the theme of duality in Ramsey theory. We finish with some open problems. 1. Ramsey theory and topological dynamics...
متن کامل